Science Prize

For individuals, research teams or institutions for work conducted on relevant toxicity pathways. Outstanding research producing an effective non-animal safety test based on an approach other than toxicity pathways, where none existed before, may also be considered.

There is a £50,000 prize fund shared between all the winners of the Science Prize.

21st Century Toxicology is a new approach to safety testing which is exciting regulators, toxicologists, campaigners and companies around the world. It has become possible because of advances in biology, genetics, computer science and robotics.

It offers better relevance to humans (rather than using mice, rats and rabbits), and will explain the underlying causes of toxicity. Unlike animal methods, the new tests will help predict human variability and differential effects on embryos, children and adults. And as the superior scientific basis of the new approach is recognised, outdated animal tests will be replaced.


Background Papers and Materials

Humane Society International (video)

National Academy of Sciences Introduction (3pp pdf)

Human Toxicology Project Document (2pp pdf)

US National Academy of Sciences (Book 196pp)



Entries for 2019 are due to open in April.


Previous Winners


2018 Prize

Dr Dan Huh, The BIOLines Research Group, University of Pennsylvania, USA, (£50,000)
Microengineered bio-mimicry of human physiological systems.


2017 Prize

Professor Jennifer Lewis, Lewis Bioprinting Team – Harvard University, USA, (£50,000)
Their research seeks to completely eliminate the use of animals by the pharmaceutical and cosmetic industries. Towards this goal, the research team at the Wyss Institute at Harvard University has developed a multimaterial bioprinting platform for fabricating 3D human organ-on-chip models.

Dr Suhyon Lee – Biosolution Co Ltd, South Korea, Commendation
Developing human tissue models using tissue engineering technology. The models that are developed/manufactured here are reconstructed human tissue models by 3D culturing human derived cells.


2016 Prize

Prof Marcel Leist, University of Konstanz / CAAT-Europe, Germany (£40,000)
This group focuses on the development of toxicological tests that are based on the use of human cells. Their vision is that eventually, when all these tests are established, the hazard can be predicted, based on an in vitro test battery.

Dr. Daniele Zink and Dr. Lit-Hsin Loo, (A*STAR), Singapore (£10,000)
A research team led by Dr Daniele Zink from the Institute of Bioengineering and Nanotechnology and Dr Lit-Hsin Loo from the Bioinformatics Institute of the Agency for Science, Technology and Research in Singapore have developed animal-free methods that can accurately predict the toxic effects of chemicals on the human kidney.


2015 Prize

Oncotheis, Switzerland (£25,000)
Oncotheis have engineered an innovative human lung cancer tissue culture model to test in vitro both the effectiveness and the toxicity of investigational therapeutics while sparing the lives of animals.

Prof Michael L. Shuler & Team, USA (£25,000)
Professor Michael L. Shuler, Cornell University & Hesperos
Asst. Professor Mandy B. Esch, Syracuse University
Asst. Professor Gretchen J. Mahler, SUNY Binghampton University
Professor Tracy Stokol, Cornell University
Dr James Hickman, University of Central Florida & Hesperos

Since 1989 they have developed in vitro systems to predict human response to drugs by using physiologically-based pharmacokinetic (PBPK) models to guide the development of experimental systems that mimic human response to drugs. These systems have been called “Body-on-a-Chip” systems.


2014 Prize

Professor Roland Grafström and Dr. Pekka Kohonen, Karolinska Institutet, Sweden (£50,000)
The Grafström laboratory has developed a cancer biology work and Tox21 Century Toxicology-inspired approach for replacing toxicity testing in animals with informatics-driven data analysis of human cell cultures exposed to toxic agents.


2013 Prize

QSAR and Molecular Modelling Group, Liverpool John Moores University, UK (£25,000)
For their work developing computational alternatives to animal testing to predict the effects of chemicals.

The Lung & Particles Research Group, Cardiff University, UK (£25,000)
For their work developing non-animal replacement models of the human respiratory system for inhalation toxicology applications.


2012 Prize

The Institute for Health and Consumer Protection, European Commission Joint Research Centre, Italy (£50,000)
For its work on toxicity pathways in heptatoxicology and developmental toxicology.