Science Prize
The Lush Prize aims to stimulate worldwide research in 21st century toxicology with a view to replacing animal tests completely.
In 2019 Lush Prize decided to re-focus its criteria for awarding its science prizes on projects most likely to lead to practical non-animal tests which could be accepted by regulators.
We think the most promising approaches include:
- adverse outcome pathways
- organs on chips, and
- computational toxicology
Lush Prize is also particularly interested in human relevant adverse outcome pathways for systemic toxicology or developmental toxicology.
There is a £50,000 prize fund shared between all the winners of the Science Prize.
Other Awards
There are two related Recognition Awards, non-cash awards in areas where money prizes were either not appropriate or necessary.
Major Science Collaboration – for significant international collaborations looking to develop non-animal techniques or approaches more widely and in the longer term.
Health Charity Project – for animal-free work, or collaborations by health charities, that have created important new insights or techniques in the last eighteen months.
Entering
Entries for the next prize cycle are due to open in 2025.
Stay up to date about entry dates and other news by signing up for occasional email updates about the Prize:
Background Paper
The Lush Science Prize 2022 background paper (PDF) describes how projects that might be worthy of consideration as potential prize winners were identified, and each project was scored to create a shortlist.
Previous Winners
2024 Prize
Emulate Inc., USA, £50,000
Project: Validation of Emulate’s Human Liver Chip for Preclinical Toxicology.
emulatebio.com
Also commended:
Comparative Toxicogenomics Database, USA
Project: The Comparative Toxicogenomics Database provides computational solutions that fill mechanistic knowledge gaps for toxic adverse pathways.
2022 Prize
The Acute Systemic Toxicity team within RTI International, USA, £50,000
Project: Mapping mechanistic pathways of acute oral systemic toxicity using chemical structure and bioactivity measurements.
2020 Prize
Dr Tim Allen, The MIE Atlas Team, Cambridge University, UK (£50,000)
Project: In Silico Models to Predict Human Molecular Initiating Events.
researchgate.net/profile/Timothy_Allen10
Also commended:
Dr Azra Raza, MDS Centre, Columbia University, USA
Project: Tissue Repository.
azraraza.com
2018 Prize
Dr Dan Huh, The BIOLines Research Group, University of Pennsylvania, USA (£50,000)
Microengineered bio-mimicry of human physiological systems.
http://biolines.seas.upenn.edu
2017 Prize
Professor Jennifer Lewis, Lewis Bioprinting Team – Harvard University, USA, (£50,000)
Their research seeks to completely eliminate the use of animals by the pharmaceutical and cosmetic industries. Towards this goal, the research team at the Wyss Institute at Harvard University has developed a multimaterial bioprinting platform for fabricating 3D human organ-on-chip models.
Dr Suhyon Lee – Biosolution Co Ltd, South Korea, Commendation
Developing human tissue models using tissue engineering technology. The models that are developed/manufactured here are reconstructed human tissue models by 3D culturing human derived cells.
2016 Prize
Prof Marcel Leist, University of Konstanz / CAAT-Europe, Germany (£40,000)
This group focuses on the development of toxicological tests that are based on the use of human cells. Their vision is that eventually, when all these tests are established, the hazard can be predicted, based on an in vitro test battery.
https://www.uni-konstanz.de/en/university/
Dr. Daniele Zink and Dr. Lit-Hsin Loo, (A*STAR), Singapore (£10,000)
A research team led by Dr Daniele Zink from the Institute of Bioengineering and Nanotechnology and Dr Lit-Hsin Loo from the Bioinformatics Institute of the Agency for Science, Technology and Research in Singapore have developed animal-free methods that can accurately predict the toxic effects of chemicals on the human kidney.
www.ibn.a-star.edu.sg/
Dr Daniele Zink and Dr Lit-Hsin Loo on what winning a Lush Prize meant for them.
2015 Prize
Oncotheis, Switzerland (£25,000)
Oncotheis have engineered an innovative human lung cancer tissue culture model to test in vitro both the effectiveness and the toxicity of investigational therapeutics while sparing the lives of animals.
www.oncotheis.com
Prof Michael L. Shuler & Team, USA (£25,000)
Professor Michael L. Shuler, Cornell University & Hesperos
Asst. Professor Mandy B. Esch, Syracuse University
Asst. Professor Gretchen J. Mahler, SUNY Binghampton University
Professor Tracy Stokol, Cornell University
Dr James Hickman, University of Central Florida & Hesperos
Since 1989 they have developed in vitro systems to predict human response to drugs by using physiologically-based pharmacokinetic (PBPK) models to guide the development of experimental systems that mimic human response to drugs. These systems have been called “Body-on-a-Chip” systems.
cornell.edu/people/profile
2014 Prize
Professor Roland Grafström and Dr. Pekka Kohonen, Karolinska Institutet, Sweden (£50,000)
The Grafström laboratory has developed a cancer biology work and Tox21 Century Toxicology-inspired approach for replacing toxicity testing in animals with informatics-driven data analysis of human cell cultures exposed to toxic agents.
http://ki.se/en/imm/startpage
2013 Prize
QSAR and Molecular Modelling Group, Liverpool John Moores University, UK (£25,000)
For their work developing computational alternatives to animal testing to predict the effects of chemicals.
https://www.ljmu.ac.uk/
The Lung & Particles Research Group, Cardiff University, UK (£25,000)
For their work developing non-animal replacement models of the human respiratory system for inhalation toxicology applications.
http://www.cardiff.ac.uk/biosi/
2012 Prize
The Institute for Health and Consumer Protection, European Commission Joint Research Centre, Italy (£50,000)
For its work on toxicity pathways in heptatoxicology and developmental toxicology.
http://ihcp.jrc.ec.europa.eu
Spread the word: