Machine Learning Enabled “RASAR” Toxicity Models Outperform Animal Test Counterparts

UL Cheminformatics Suite
Model Development: Simple RASAR

- **Jan 2016**: ECHA Database
 - NLP Collection of ECHA C&L
- **Dec 2016**: JHU Publications
 - Skin sens., Eye irrit., Oral models
- **SOT 2016**: REACHAcross Launch
 - https://ulreachacross.com
Model Development: Simple RASAR

Jan 2016 Dec 2016 SOT 2016

ECHA Database JHU Publications REACHAcross Launch
NLP Collection of ECHA C&L Skin sens., Eye irrit., Oral models https://ulreachacross.com

Toxic?
Model Development: Data Fusion RASAR

Jan 2016 Dec 2016 SOT 2016

ECHA Database JHU Publications REACHAcross Launch
NLP Collection of ECHA C&L Skin sens., Eye irrit., Oral models https://ulreachacross.com

2017 July 2018 Fall 2018

Algorithm Upgrade Tox Sci Publication UL Cheminformatics

Toxic?
Model Development: Data Fusion RASAR

Jan 2016
ECHA Database
NLP Collection of ECHA C&L

Dec 2016
JHU Publications
Skin sens., Eye irrit., Oral models

SOT 2016
REACHAcross Launch
https://ulreachacross.com

2017
Algorithm Upgrade
Data Fusion & Potency

July 2018
Tox Sci Publication
“RASAR” Models

Fall 2018
UL Cheminformatics

Toxic?

Data Fusion

Simple

Toxic?
Data Sources:

Legacy

C&L Inventory

What is the Classification and Labelling Inventory?

This database contains classification and labelling information on notified and registered substances received from manufacturers and importers. It also includes the list of harmonised classifications (Tables 3.1 and 3.2 of Annex VI to the CLP Regulation) and the names of harmonised substances translated in all EU languages.

Companies have provided this information in their C&L notifications or registration dossiers. ECHA maintains the C&L Inventory, but does not review or verify the accuracy of the information.

The number of notifications and substances in the database will

QUESTIONS AND ANSWERS

- Questions and Answers on C&L Inventory
- Q&A on Notification C&L Inventory
- Questions and Answers on Labelling
- Questions and Answers on Classification
- Questions and Answers on Scope and exemptions under CLP
Data Sources:

Legacy

Production

C&L Inventory

What is the Classification and Labelling Inventory?

This database contains classification and labelling information on notified and registered substances received from manufacturers and importers. It also includes the list of harmonised classifications (Tables 3.1 and 3.2 of Annex VI to the CLP Regulation) and the names of harmonised substances translated in all EU languages.

Companies have provided this information in their C&L notifications or registration dossiers. ECHA maintains the C&L Inventory, but does not review or verify the accuracy of the information.

The number of notifications and substances in the database will

QUESTIONS AND ANSWERS

- Questions and Answers on C&L Inventory
- Q&A on Notification C&L Inventory
- Questions and Answers on Labelling
- Questions and Answers on Classification
- Questions and Answers on Scope and exemptions under CLP

NTP
National Toxicology Program
U.S. Department of Health and Human Services
Legacy Production

80,908 Chemicals, 74 Properties, 833,844 End-Points
Similarity

Data Source

Similarity

Graph Algorithms

Fingerprinter

Metric

$$M(0100\ldots, 0010) = -\infty \leq x \leq \infty$$

$$x = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

Tanimoto - Heuristic
Data Fusion “RASAR” Model

Acute Oral?

Target

<table>
<thead>
<tr>
<th>Acid</th>
<th>Muta.</th>
<th>Corr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
Data Fusion “RASAR” Model

Target

Acute Oral?

Pos. Source

<table>
<thead>
<tr>
<th>Acid</th>
<th>Oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Target

<table>
<thead>
<tr>
<th>Acid</th>
<th>Muta.</th>
<th>Corr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
Data Fusion “RASAR” Model

<table>
<thead>
<tr>
<th>Pos. Source</th>
<th>Target</th>
<th>Neg. Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid</td>
<td>Oral</td>
<td>Acid</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acid</th>
<th>Muta.</th>
<th>Corr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

0.4 0.6
Data Fusion “RASAR” Model

Target

Acute Oral?

Hazard & Properties
74 (e.g. H225 - flammable liquid)

Features
74 x 3 = 222 (target, pos, neg)

Database
ECHA C&L, Pubchem, NTP

Learning
Random Forest, Grad. Boost Trees, Multilayer Perceptron

Pos. Source

<table>
<thead>
<tr>
<th>Acid</th>
<th>Oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Target

<table>
<thead>
<tr>
<th>Acid</th>
<th>Muta.</th>
<th>Corr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

Neg. Source

<table>
<thead>
<tr>
<th>Oral</th>
<th>Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Data Fusion “RASAR” Model

Hazard & Properties
- 74 (e.g. H225 - flammable liquid)

Features
- 74 x 3 = 222 (target, pos, neg)

Database
- ECHA C&L, Pubchem, NTP

Learning
- Random Forest, Grad. Boost Trees, Multilayer Perceptron

<table>
<thead>
<tr>
<th>Pos. Source</th>
<th>Target</th>
<th>Neg. Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid 0.8</td>
<td>Oral 0.8</td>
<td>Acid 0.4</td>
</tr>
<tr>
<td>Oral 0.8</td>
<td></td>
<td>Acid 0.6</td>
</tr>
</tbody>
</table>

Acute Oral?
- Target: 0.8
- Pos. Source: Acid 0.8, Oral 0.8
- Neg. Source: Acid 0.4, Oral 0.6
Advantages

Familiar Concept
Advantages

Familiar Concept

<table>
<thead>
<tr>
<th>endpoint</th>
<th>pos</th>
<th>neg</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>skin_sensitisation</td>
<td>2865</td>
<td>1886</td>
<td>4751</td>
</tr>
<tr>
<td>eye_damage_ irritation</td>
<td>14778</td>
<td>944</td>
<td>15722</td>
</tr>
<tr>
<td>acute_oral</td>
<td>10225</td>
<td>1932</td>
<td>12157</td>
</tr>
<tr>
<td>mutagenicity</td>
<td>600</td>
<td>2795</td>
<td>3395</td>
</tr>
<tr>
<td>skin_corrosion_ irritation</td>
<td>13758</td>
<td>1348</td>
<td>15106</td>
</tr>
<tr>
<td>acute_dermal</td>
<td>4334</td>
<td>1980</td>
<td>6314</td>
</tr>
<tr>
<td>acute_aquatic</td>
<td>1122</td>
<td>921</td>
<td>2043</td>
</tr>
<tr>
<td>chronic_aquatic</td>
<td>2554</td>
<td>251</td>
<td>2805</td>
</tr>
<tr>
<td>acute_inhalation</td>
<td>4812</td>
<td>1372</td>
<td>6184</td>
</tr>
</tbody>
</table>
Advantages

Familiar Concept

<table>
<thead>
<tr>
<th>endpoint</th>
<th>pos</th>
<th>neg</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>skin_sensitisation</td>
<td>2865</td>
<td>1886</td>
<td>4751</td>
</tr>
<tr>
<td>eye_damage_irritation</td>
<td>14778</td>
<td>944</td>
<td>15722</td>
</tr>
<tr>
<td>acute_oral</td>
<td>10225</td>
<td>1932</td>
<td>12157</td>
</tr>
<tr>
<td>mutagenicity</td>
<td>600</td>
<td>2795</td>
<td>3395</td>
</tr>
<tr>
<td>skin_corrosion_irritation</td>
<td>13758</td>
<td>1348</td>
<td>15106</td>
</tr>
<tr>
<td>acute_dermal</td>
<td>4334</td>
<td>1980</td>
<td>6314</td>
</tr>
<tr>
<td>acute_aquatic</td>
<td>1122</td>
<td>921</td>
<td>2043</td>
</tr>
<tr>
<td>chronic_aquatic</td>
<td>2554</td>
<td>251</td>
<td>2805</td>
</tr>
<tr>
<td>acute_inhalation</td>
<td>4812</td>
<td>1372</td>
<td>6184</td>
</tr>
</tbody>
</table>

Endpoint Agnostic

More Data
Advantages

Familiar Concept

<table>
<thead>
<tr>
<th>endpoint</th>
<th>pos</th>
<th>neg</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>skin_sensitisation</td>
<td>2865</td>
<td>1886</td>
<td>4751</td>
</tr>
<tr>
<td>eye_damage_ irritation</td>
<td>14778</td>
<td>944</td>
<td>15722</td>
</tr>
<tr>
<td>acute_oral</td>
<td>10225</td>
<td>1932</td>
<td>12157</td>
</tr>
<tr>
<td>mutagenicity</td>
<td>600</td>
<td>2795</td>
<td>3395</td>
</tr>
<tr>
<td>skin_corrosion_ irritation</td>
<td>13758</td>
<td>1348</td>
<td>15106</td>
</tr>
<tr>
<td>acute_dermal</td>
<td>4334</td>
<td>1980</td>
<td>6314</td>
</tr>
<tr>
<td>acute_aquatic</td>
<td>1122</td>
<td>921</td>
<td>2043</td>
</tr>
<tr>
<td>chronic_aquatic</td>
<td>2554</td>
<td>251</td>
<td>2805</td>
</tr>
<tr>
<td>acute_inhalation</td>
<td>4812</td>
<td>1372</td>
<td>6184</td>
</tr>
</tbody>
</table>

More Data

Endpoint Agnostic

Multi-Task Learning
Performance

<table>
<thead>
<tr>
<th>Hazard</th>
<th>OECD TG</th>
<th>Reproducibility of OECD Animal Test Guidelines¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Oral</td>
<td>401</td>
<td>92%</td>
</tr>
<tr>
<td>Acute Dermal</td>
<td>402</td>
<td>78%</td>
</tr>
<tr>
<td>Skin Irritation</td>
<td>404</td>
<td>75.5%</td>
</tr>
<tr>
<td>Eye Irritation</td>
<td>405</td>
<td>83.5%</td>
</tr>
<tr>
<td>Skin Sensitization</td>
<td>406</td>
<td>82.5%</td>
</tr>
<tr>
<td></td>
<td>429</td>
<td>85.5%</td>
</tr>
<tr>
<td>Mutagenicity</td>
<td>474</td>
<td>74%</td>
</tr>
<tr>
<td></td>
<td>475</td>
<td>75%</td>
</tr>
</tbody>
</table>

¹. Study of REACH Registrations was used to extract multiple guideline studies on the same chemical. Conditional pairwise probabilities were calculated to derive accuracy of a repeat experiment.

predicted, i.e. coverage is 100%
Performance

<table>
<thead>
<tr>
<th>Hazard</th>
<th>OECD TG</th>
<th>Reproducibility of OECD Animal Test Guidelines¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Oral</td>
<td>401</td>
<td>92%</td>
</tr>
<tr>
<td>Acute Dermal</td>
<td>402</td>
<td>78%</td>
</tr>
<tr>
<td>Skin Irritation</td>
<td>404</td>
<td>75.5%</td>
</tr>
<tr>
<td>Eye Irritation</td>
<td>405</td>
<td>83.5%</td>
</tr>
<tr>
<td>Skin Sensitization</td>
<td>406</td>
<td>82.5%</td>
</tr>
<tr>
<td></td>
<td>429</td>
<td>85.5%</td>
</tr>
<tr>
<td>Mutagenicity</td>
<td>474</td>
<td>74%</td>
</tr>
<tr>
<td></td>
<td>475</td>
<td>75%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Simple RASAR Coverage</th>
<th>Simple RASAR BAC²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Oral Binary</td>
<td>87%</td>
<td>77%</td>
</tr>
<tr>
<td>Acute Dermal Binary</td>
<td>73%</td>
<td>77%</td>
</tr>
<tr>
<td>Skin Irritation Binary</td>
<td>75%</td>
<td>77%</td>
</tr>
<tr>
<td>Eye Irritation Binary</td>
<td>88%</td>
<td>79%</td>
</tr>
<tr>
<td>Skin Sensitization</td>
<td>85%</td>
<td>68%</td>
</tr>
<tr>
<td>Mutagenicity Binary</td>
<td>83%</td>
<td>59%</td>
</tr>
<tr>
<td>Chronic Aquatic Binary</td>
<td>80%</td>
<td>77%</td>
</tr>
<tr>
<td>Acute Aquatic</td>
<td>82%</td>
<td>67%</td>
</tr>
<tr>
<td>Acute Inhalation</td>
<td>83%</td>
<td>74%</td>
</tr>
</tbody>
</table>

¹. Study of REACH Registrations was used to extract multiple guideline studies on the same chemical. Conditional pairwise probabilities were calculated to derive accuracy of a repeat experiment.

². Calculated using leave-one-out cross-validation. Sensitivities constrained at 80% Specificity range is 50-75%
Performance

<table>
<thead>
<tr>
<th>Hazard</th>
<th>OECD TG</th>
<th>Reproducibility of OECD Animal Test Guidelines¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Oral</td>
<td>401</td>
<td>92%</td>
</tr>
<tr>
<td>Acute Dermal</td>
<td>402</td>
<td>78%</td>
</tr>
<tr>
<td>Skin Irritation</td>
<td>404</td>
<td>75.5%</td>
</tr>
<tr>
<td>Eye Irritation</td>
<td>405</td>
<td>83.5%</td>
</tr>
<tr>
<td>Skin Sensitization</td>
<td>406</td>
<td>82.5%</td>
</tr>
<tr>
<td></td>
<td>429</td>
<td>85.5%</td>
</tr>
<tr>
<td>Mutagenicity</td>
<td>474</td>
<td>74%</td>
</tr>
<tr>
<td></td>
<td>475</td>
<td>75%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Simple RASAR Coverage</th>
<th>Simple RASAR BAC²</th>
<th>Data Fusion RASAR BAC³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Oral Binary</td>
<td>87%</td>
<td>77%</td>
<td>93%</td>
</tr>
<tr>
<td>Acute Dermal Binary</td>
<td>73%</td>
<td>77%</td>
<td>90%</td>
</tr>
<tr>
<td>Skin Irritation Binary</td>
<td>75%</td>
<td>77%</td>
<td>97%</td>
</tr>
<tr>
<td>Eye Irritation Binary</td>
<td>88%</td>
<td>79%</td>
<td>98%</td>
</tr>
<tr>
<td>Skin Sensitization Binary</td>
<td>85%</td>
<td>68%</td>
<td>84%</td>
</tr>
<tr>
<td>Mutagenicity Binary</td>
<td>83%</td>
<td>59%</td>
<td>88%</td>
</tr>
<tr>
<td>Chronic Aquatic Binary</td>
<td>80%</td>
<td>77%</td>
<td>98%</td>
</tr>
<tr>
<td>Acute Aquatic</td>
<td>82%</td>
<td>67%</td>
<td>95%</td>
</tr>
<tr>
<td>Acute Inhalation</td>
<td>83%</td>
<td>74%</td>
<td>90%</td>
</tr>
</tbody>
</table>

1. Study of REACH Registrations was used to extract multiple guideline studies on the same chemical. Conditional pairwise probabilities were calculated to derive accuracy of a repeat experiment.

2. Calculated using leave-one-out cross-validation. Sensitivities constrained at 80% Specificity range is 50-75%

3. Calculated using Five-fold cross-cross-validation results. All chemicals were predicted, i.e. coverage is 100%
Performance

Test Performance

Animal Test Reproducibility of 74-92%

Data Fusion RASAR Model balanced accuracies of 84-98% on 100% coverage

Table of Hazard Reproducibility

<table>
<thead>
<tr>
<th>Hazard</th>
<th>OECD TG</th>
<th>Reproducibility of OECD Animal Test Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Dermal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin Irritation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye Irritation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin Sensitization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutagenicity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table of Simple RASAR and Data Fusion RASAR BAC

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Simple RASAR Coverage</th>
<th>Simple RASAR BAC</th>
<th>Data Fusion RASAR BAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Oral</td>
<td>87%</td>
<td>93%</td>
<td>98%</td>
</tr>
<tr>
<td>Acute Dermal</td>
<td>73%</td>
<td>77%</td>
<td>97%</td>
</tr>
<tr>
<td>Skin Irritation</td>
<td>75%</td>
<td>77%</td>
<td>98%</td>
</tr>
<tr>
<td>Eye Irritation</td>
<td>88%</td>
<td>79%</td>
<td>98%</td>
</tr>
<tr>
<td>Skin Sensitization</td>
<td>85%</td>
<td>68%</td>
<td>84%</td>
</tr>
<tr>
<td>Mutagenicity</td>
<td>83%</td>
<td>59%</td>
<td>88%</td>
</tr>
</tbody>
</table>

1. Study of REACH Registrations was used to extract multiple guideline studies on the same chemical. Conditional pairwise probabilities were calculated to derive accuracy of a repeat experiment.

2. Calculated using leave-one-out cross-validation.

3. Calculated using Five-fold cross-validation results. All chemicals were predicted, i.e. coverage is 100%

Cost of Animal Tests

Toxicological “Six Pack” accounted for 55% of all animals used in toxicity testing in EU 2011

$3BB Euro spent on animal tests for toxicology each year

REACH Registration Case Study

~12,000 and ~13,000 chemicals were received for Phase 1 & 2 registration, respectively

ECHA expects 60,000 registrations in 2018

If we had stopped animal studies for REACH after the 2013 deadline (the data we are using) Using the Data Fusion RASAR would have saved 2.8 million animals

$490 Euro in testing
Performance and Impact

Test Performance

Animal Test Reproducibility of 74-92%

Data Fusion RASAR Model balanced accuracies of 84-98% on 100% coverage

Cost of Animal Tests

Toxicological “Six Pack” accounted for 55% of all animals used in toxicity testing in EU 2011

$3BB Euro spent on animal tests for toxicology each year

<table>
<thead>
<tr>
<th>Hazard</th>
<th>OECD TG</th>
<th>Reproducibility of OECD Animal Test Guidelines</th>
<th>Hazard</th>
<th>Simple RASAR Coverage</th>
<th>Simple RASAR BAC2</th>
<th>Data Fusion RASAR BAC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Oral</td>
<td>401</td>
<td>92%</td>
<td></td>
<td></td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td>Acute Dermal</td>
<td>402</td>
<td>78%</td>
<td></td>
<td></td>
<td></td>
<td>90%</td>
</tr>
<tr>
<td>Skin Irritation</td>
<td>404</td>
<td>75.5%</td>
<td></td>
<td></td>
<td></td>
<td>97%</td>
</tr>
<tr>
<td>Eye Irritation</td>
<td>405</td>
<td>83.5%</td>
<td></td>
<td></td>
<td></td>
<td>98%</td>
</tr>
<tr>
<td>Skin Sensitization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84%</td>
</tr>
<tr>
<td>Mutagenicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>88%</td>
</tr>
<tr>
<td>Chronic Aquatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98%</td>
</tr>
<tr>
<td>Acute Aquatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Acute Inhalation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83%</td>
</tr>
</tbody>
</table>
Test Performance

Animal Test Reproducibility of 74-92%

Data Fusion RASAR Model balanced accuracies of 84-98% on 100% coverage

Cost of Animal Tests

Toxicological “Six Pack” accounted for 55% of all animals used in toxicity testing in EU 2011

$3BB Euro spent on animal tests for toxicology each year

REACH Registration Case Study

~12,000 and ~13,000 chemicals were received for Phase 1 & 2 registration, respectively

ECHA expects 60,000 registrations in 2018

If we had stopped animal studies for REACH after the 2013 deadline (the data we are using)

Using the Data Fusion RASAR would have saved

- **2.8 million animals**
- **$490 Euro in testing**

1. Study of REACH Registrations was used to extract multiple guideline studies on the same chemical. Conditional pairwise probabilities were calculated to derive accuracy of a repeat experiment.

2. Calculated using leave-one-out cross-validation.

3. Calculated using Five-fold cross-validation results. All chemicals were predicted, i.e. coverage is 100%
Acknowledgements